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Methods of Economic Research 

Chapter 1: an overview of regression analysis 
 

Econometrics  Econometrics means measurement (the meaning of the Greek word 
metrics) in economic. However, econometrics includes all those statistical 
and mathematical techniques that are utilized in the analysis of economic 
data. The main aim of using those tools is to prove or disprove particular 
economic propositions and models.  

 
Econometrics has three major uses 

1. Describing economic reality 
2. Testing hypotheses about economic theory 
3. Forecasting future economic activity 

 

Hypothesis testing Econometrics aims primarily at validating or refuting economic laws or 
theories. Hypothesis testing is the evaluation of alternative theories with 
quantitative evidence.  

Estimated regression 
coefficient 

The ability to estimate these coefficients makes econometrics valuable. 
Even though the sign is positive, we first must test it: the statistical 
significance of that estimate would have to be investigated before such 
conclusions could be justified.  

Forecast  It is used to predict the future value(s) of the dependent variable, on the 
basis of known or expected future value(s) of the explanatory expected 
variable. The forecasting task of econometrics is crucial as it provide the 
mechanism for regulating and planning future economic policies  

 

 

 
Economics is typically an observational discipline rather than an experimental one. We need a special 
field called econometrics, and textbooks about it, because it is generally accepted that economic 
data possess certain properties that are not considered in standard statistics texts or are not 
sufficiently emphasized there for use by economists. Different approaches make sense within the 
field of economics. The kind of econometric tools used depends in part on the uses of that equation.  
 
To get a better picture of these approaches, let’s look at the steps used in non-experimental 
quantitative research: 

1. Specifying the models or relationships to be studied 
2. Collecting the data needed to quantify the models 
3. Quantifying the models with the data 

 
Focus on one econometric approach: single-equation linear regression analysis. It is important to 
remember that regression is only one of many approaches to econometric quantification.  

Econometricians use regression analysis to make quantitative estimates of economic relationships 
that previously have been completely theoretical in nature. To predict the direction of the change, 
you need a knowledge of economic theory and the general characteristics of the product in question. 
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To predict the amount of the change, though, you need a sample of data, and you need a way to 
estimate the relationship.  

 

Regression analysis A statistical technique that attempts to explain movements in one 
variable, the dependent variable, as a function of movements in a set of 
other variables, called the independent (or explanatory) variables, through 
the quantification of a single equation. It is a reliable method of 
identifying which variables have an impact on a topic of interest. The 
process of performing a regression allows you to confidently determine 
which factors matter most, which factors can be ignored, and how these 
factors influence each other. 
 

 
 
Regression analysis is a natural tool for economists because most economic propositions can be 
stated in such single-equation functional forms. Simplest single-equation linear regression model is: 
 
Y = 𝛽0 +  𝛽1𝑥 
 
The model is a single-equation model because it’s the only equation specified. The model is linear 
because if you were to plot the equation it would be a straight line rather than a curve. The ßs are 
the coefficients that determine the coordinates of the straight line at any point.  

– 𝛽0 is the constant or intercept term: it indicates the value of Y when X equals zero.  
– 𝛽1𝑥 is the slope coefficient: it indicates the amount that Y will change when X increases one 

unit (much of the attention in regression analysis is on slope coefficients). 
 

𝛽1𝑥 = 
Y2− Y1

X2− X1
 = 

∆Y

∆X
  

 
For a linear model, the slope is constant over the entire function. If linear regression techniques are 
going to be applied to an equation, that equation must be linear. An equation is linear if plotting the 
function in terms of X and Y generates a straight line. We can redefine most nonlinear equations to 
make them linear.  
 
Z = X2 
Y = 𝛽0 +  𝛽1𝑍 
 

Stochastic error term A term that is added to a regression equation to introduce all the variation 
in Y that cannot be explained by the included Xs. 

 
The addition of a stochastic error term (𝜖) results in a typical regression equation: 
 
Y = 𝛽0 +  𝛽1𝑥 + 𝜖 
 
The expression 𝛽0 + 𝛽1𝑥 is called the deterministic component of the regression equation because 
it indicates the value of Y that is determined by a given value of X, which is assumed to be non-
stochastic. This deterministic component can be thought of as the expected value of Y given X. The 
error term is called the stochastic component.  
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The regression notation needs to be extended to allow the possibility of more than one independent 
variable and to include reference to the numbers of observations.  
 
Y = 𝛽0 +  𝛽1𝑥i + 𝜖i (i = 1, 2, …, N) 
 
These multivariate (more than one independent variable) regression coefficients serve to isolate the 
impact on Y of a change in one variable from the impact of Y on changes in the other variables. In the 
real world it is very difficult to run controlled economic experiments, because many economic factors 
change simultaneously, often in the opposite direction. Thus, the ability of regression analysis to 
measure the impact of one variable on the dependent variable, holding constant the influence of the 
other variables in the equation, is a tremendous advantage. Note that if a variable is not included in 
the equation, then its impact is not held constant in the estimation of the regression coefficients.  
 

Dummy variable Variable that can only take two values, 0 or 1. It is extremely useful when 
we want to quantify a concept that is inherently qualitative (gender). 

Time series Sample consists of a series of years and numbers.  

 

Estimated regression equation Quantified version of the theoretical regression equation. It is 
obtained from a sample of data for actual Xs and Ys.  

Estimated regression 

coefficients (𝛽̂0 or 𝛽̂1) 

Empirical best guesses of the true regression coefficients and are 
obtained from data from samples of the Ys and Xs.  

Residual (ei) The difference between the estimated value of the dependent 

variable (𝑌̂𝑖) and the actual value of the dependent variable (Y1) 

 
Difference between the theoretical regression analysis and the estimated regression analysis 

1. The theoretical regression coefficients are replaced with estimates of those coefficients 
– The theoretical equation is purely abstract in nature (Y = 𝛽0 +  𝛽1𝑥i + 𝜖i) and the 

estimated regression equation has actual numbers in it (Ŷ= 103.40 +  6.38𝑥i). 
 

The residual is the difference between the observed Y and the estimated regression line (𝑌̂), while 
error term is the difference between the observed Y and the true regression equation (the expected 
value of Y). Note that the error term is a theoretical concept that can never be observed, but the 
residual is a real-world value that is calculated for each observation every time a regression is run.  
 

True regression equation Estimated regression equation 

𝛽0   
𝛽1𝑥i 
𝜖i 

𝛽̂0  

𝛽̂1  
ei 

 

Cross-sectional 
data set 

All the observations are from the same point in time and represent different 
individual economic entities from that same point in time  
(looking at local houses that are sold in the last few weeks – building a 
regression model of the sales prices of the houses as a function of their size) 
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Chapter 2: ordinary least squares (OLS) 
2.1 Introduction 
The ordinary Least Square (OLS) method is used extensively in regression analysis primarily because 
it is intuitively appealing and mathematically much simpler than the method of maximum likelihood. 
 
 
The purpose of regression analysis is to take a purely theoretical equation like 
 
Yi = 𝛽0 + 𝛽1𝑥i + 𝜖i 

 

And use a set of data to create an estimated equation like 
 

Ŷ𝑖 =  𝛽̂0 +  𝛽̂1𝑥𝑖  

Where each hat indicates a sample estimate of the true population value. The purpose of the 

estimation technique is to obtain numerical values for the coefficients of an otherwise 

completely theoretical regression equation. The most widely used method of obtaining these 

estimates is Ordinary Least Squares (OLS), which has become so standard that its estimates 

are presented as a point of reference even when results from other estimation techniques are 

used.   

 

OLS minimizes ∑ ei
2N

i=1    (i = 1, 2, …, N) 
 
Since these residuals (eis) are the differences between the actual Ys and the estimated Ys produced 

by the regression (the 𝑌̂ in the equation), is the equation above equivalent to saying that  
 

OLS minimizes ∑(Yi − Ŷi)
2

 

 
There are at least three important reasons for using OLS to estimate regression models: 

– OLS is relatively easy to use 

– The goal of minimizing ∑ ei
2N

i=1  is quite appropriate from a theoretical point of view 
– OLS estimates have several useful characteristics 

- The sum of the residuals is exactly zero 
- OLS can be shown to be the best estimator possible under a set of specific 

assumptions. 

Conclusion:  

Ordinary least squares (OLS) or linear least squares is a method for estimating the unknown 

parameters in a linear regression model, with the goal of minimizing the differences between 

the observed responses in some arbitrary dataset and the responses predicted by the linear 

approximation of the data (visually this is seen as the sum of the vertical distances between 

each data point in the set and the corresponding point on the regression line - the smaller the 

differences, the better the model fits the data).  
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Estimator  The OLS estimator is an estimator that minimizes the sum of squared residuals. 
The applicability of the OLS estimator is based on the classical assumptions of 
the linear regression model.  

 

OLS is an estimator and 𝜷̂ produced by OLS is an estimate (read page 39 – example on page 40) 

– β̂1 =  
∑ [(Xi−X̅)(Yi−Y̅)]N

i=1

∑ (Xi−X̅)2N
i=1

 

– β̂0 =  Y̅ − β̂1X̅   
 
Where; 

– X ̅= mean of X (or ∑ Xi /N) 
– Y ̅= mean of Y (or ∑ Yi /N) 

 
The general multivariate regression model with K independent variables: 
 
Yi = 𝛽0 + 𝛽1𝑥1i + 𝛽2𝑥2i + … + 𝛽𝐾𝑥Ki + 𝜖i  (i = 1, 2, …, n) 
 
The biggest difference between a single-independent-variable regression model and a multivariate 
regression model is in the interpretation of the latters slope coefficients. These coefficients, often 
called partial regression coefficients, are defined to allow the researcher to distinguish the impact of 
one variable from that of other independent variables. Specifically, a multivariate regression 
coefficient indicates the change in the dependent variable associated with a one-unit increase in the 
independent variable in question holding constant the other independent variables in the equation 
(but not holding constant any relevant variables that might have been omitted from the equation).  
The coefficient 𝛽0 is the value of Y when all the Xs and the error term equal zero.  
 

The goal of OLS is to choose those 𝛽̂s that minimize the summed square residuals. The application of 
OLS to an equation with more than one independent variable is quite like its application to a single-
independent-variable model. 

– β̂1 =  
(∑ yx1)(∑ x2

2) − (∑ yx2)(∑ x1x2)

(∑ x1
2)(∑ x2

2) − (∑ x1x2)2  

– β̂2 =  
(∑ yx2)(∑ x1

2) − (∑ yx1)(∑ x1x2)

(∑ x1
2)(∑ x2

2) − (∑ x1x2)2  

– β̂0 =  Y̅ − β̂1X̅1 −  β̂2X̅2 
 
Where; 

– X ̅= mean of X (or ∑ Xi /N) 
– Y ̅= mean of Y (or ∑ Yi /N) 

 
econometricians use the squared variations of Y around its mean as a measure of the amount of 
variation to be explained by the regression. This computed quantity is usually called the total sum of 
squares (TSS) and is written as 
 

TSS = ∑ (Yi −  Y̅)2N
i=1  

 
For OLS, the TSS has two components, variation that can be explained by the regression and variation 
that cannot: 
 

∑ (Yi −  Y̅)2
i    = ∑ (Ŷi −  Y̅)

2
i      +  ∑ ei

2
i  

Total sum of squares (TSS) = Explained Sum of Squares (ESS) +  Residual Sum of  
Squares (RSS) 
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This is usually called the decomposition of variance (read page 49).  

Explained Sum of Squares Measures the amount of the squared deviation of Yi from its mean that is 
explained by the regression line. ESS is attributable to the fitted regression line  

Residual Sum of Squares The unexplained portion of TSS is called the RSS. The smaller the RSS is relative 
to the TSS, the better the estimated regression line fits the data 

 

2.4 Describing the overall fit of the estimated model  
OLS is the estimating technique that minimizes the RSS and therefore maximizes the ESS for a given 
TSS. We expect that a good, estimated regression equation will explain the variation of the 
dependent variable in the sample accurately. If it does, we say that the estimated model fits the data 
well.  
 

R2 
The simplest commonly used measure of fit is R2 or the coefficient of determination. R2 is the ratio of 
the explained sum of squares to the total sum of squares: 

R2 = 
ESS

TSS
 = 1 – 

RSS

TSS
 = 1 – 

∑ ei
2

∑(Yi− Y̅)2 

 
The higher the R2 is, the closer the estimated regression equation fits the sample data. Measures of 
this type are called goodness of fit measures.  
When the R2 is 0.95, this means that the relationship between X and Y can be explained quite well by 
a linear regression equation. This kind of result is typical of a time-series regression with a good fit. 
Most of the variation has been explained (ESS), but there remains a portion of the variation that is 
essentially random or unexplained by the model (RSS).  
 
In time-series data, we often get a very high R2 because there can be significant time trends on both 
sides of the equation. In cross-sectional data, we often get low R2s because the observations (say, 
countries) differ in ways that are not easily quantified. So, there is no simple method of determining 
how high R2 must be for the fit to be considered satisfactory (matter of experience). It should be 
noted that a high R2 does not imply that changes in X lead to changes in Y, as there may be an 
underlying variable whose changes lead to changes in both X and Y.  
 

The simple correlation coefficient, r 

Simple correlation 
coefficient (r) 

It is a measure of the strength and direction of the linear relationship between 
two variables  

r = + 1 If two variables are perfectly positively correlated 

r = – 1  If two variables are perfectly negatively correlated 

r = 0 If two variables are totally uncorrelated 

 
The closer the absolute value of r is to 1, the stronger the correlation between the two variables. We 
will use the simple correlation coefficient to describe the correlation between two variables. 
Interestingly, it turns out that r and R2 are related if the estimated equation has exactly one 
independent variable. The square of r equals R2 for a regression where one of the two variables is the 
dependent variable, and the other is the only independent variable 
 

𝑅̅2, 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2  
a major problem with R2 is that adding another independent variable to a particular equation can 
never decrease R2. The equation with the greater number of independent variables will always have 
a better (or equal) fit as measured by R2. To see this, recall: 
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R2 = 
ESS

TSS
 = 1 – 

RSS

TSS
 = 1 – 

∑ ei
2

∑(Yi− Y̅)2 

 
Adding one variable cannot change TSS, but in most cases, the added variable will reduce RSS, so R2 
will rise. RSS will never increase because the OLS program could always set the coefficient of the 
added variable equal to zero, thus giving the same fit as the previous equation. The coefficient of the 
newly added variable being zero is the only circumstance in which R2 will stay the same when a 
variable is added. Otherwise, R2 will always increase when a variable is added to an equation. The 
lower the degrees of freedom, the less reliable the estimates are likely to be.  
 
R2 is little help is we are trying to decide whether adding a variable to an equation improves our 
ability to meaningfully explain the dependent variable. Because of this problem, econometricians 
have developed another measure of the quality of the fit of an equation. That measure is 𝑅̅2, which 
is R2 adjusted for the degrees of freedom: 
 

𝑅̅2 = 1 −

∑ 𝑒𝑖
2

(𝑁−𝐾−1)

∑(𝑌𝑖− 𝑌̅)
2

(𝑁−1)

= 1 −

𝑅𝑆𝑆

(𝑁−𝐾−1)
𝑇𝑆𝑆

(𝑁−1)

  

 
Alternative: the adjusted R2 can also be written as: 

𝑅̅2
 = R2 − 

𝐾

(𝑁−𝐾−1)
 𝑥 (1 − 𝑅2) 

𝑅̅2 measures the percentage of the variation of Y around its mean that is explained by the regression 
equation, adjusted for degrees of freedom. 𝑅̅2 will increase, decrease or stay the same when a 
variable is added to an equation, depending on whether the improvement in fit caused by the 
addition of the new variable outweighs the loss of the degrees of freedom. 𝑅̅2 can be used to 
compare the fits of the equation with the same dependent variable and a different number of 
independent variables. Because of this property, most researchers automatically use 𝑅̅2 instead of R2 
when evaluating the fit of their estimated regression equations.  
 
Important: always remember that the quality of the fit of an estimated equation is only one measure 
of the overall quality of that regression. The degree to which the estimated coefficients conform to 
economic theory and the researcher’s previous expectations about those coefficients are just as 
important as the fit itself.  
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Chapter 3: learning to use regression analysis 

3.1 steps in applied regression analysis 
the relative emphasis and effort expended on each step will vary, but normally all the steps are 
necessary for successful research.  
 
Steps 

1. review the literature and develop the theoretical model. 
2. specify the model: select the independent variables and the functional form. 
3. hypothesize the expected signs of the coefficients. 
4. collect the data. Inspect and clean the data. 
5. Estimate and evaluate the equation. 
6. Document the results. 

 
Step 1 review the literature and develop the theoretical model 
The first step in any applied research is to get a good theoretical grasp of the topic to be studied. You 
should start your investigation where earlier researchers left off. The most convenient approaches to 
reviewing the literature are to obtain several recent issues of the Journal of Economic Literature or a 
business-oriented publication of abstracts, or to run an Internet search or an EconLit search on your 
topic. When are topic is so new or obscure that you won’t be able to find any articles on it, there are 
two recommended possible strategies: 

1. Try to transfer theory from a similar topic to yours 
2. If all else fails, pick up the telephone and call someone who works in the field you’re 

investigating.  
 
Step 2 specify the model: select the independent variables and the functional form 
After selecting the dependent variables, the specification of a model involves choosing the following 
components: 

1. The independent variables and how they should be measured 
2. The functional (mathematical) form of the variables 
3. The properties of the stochastic error term 

 
A regression equation is specified when each of those elements has been treated appropriately. A 
mistake in any of the three elements results in a specification error (most disastrous to the validity of 
the estimated equation). Thus, the more attention paid to economic theory at the beginning of a 
project, the more satisfying the regression results are likely to be.  
 
An explanatory variable is chosen because it is a theoretical determinant of the dependent variable. 
It is expected to explain at least part of the variation in the dependent variable. Our goal should be to 
specify only relevant explanatory variables, those expected theoretically to assert a substantive 
influence on the dependent variable. Variables suspected of having little effect should be excluded 
unless their possible impact on the dependent variable is of some particular (i.e. policy) interest.  
 
When researchers decide that prices of only two other goods need to be included, they are said to 
impose their priors (i.e. previous theoretical beliefs) or their working hypotheses on the regression 
equation. The danger is that a prior may be wrong and could diminish the usefulness of the 
estimated regression equation. Each of the priors should be explained and justified in detail.  
 
 
 

Dummy variable (gender) Takes on the values of one or zero depending on whether a specified condition 
holds.  
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Step 3 Hypothesize the expected signs of the coefficients 
Once the variables are selected, it’s important to hypothesize the expected signs of the regression 
coefficients. The signs above the variables indicate the hypothesized sign of the respective regression 
coefficients in a linear model (page 75). In many cases, the basic theory is general knowledge, so the 
reason for each sign need not be discussed. However, in any doubt surrounds the selection of an 
expected sign, you should document the opposing forces at work and the reason for hypothesizing a 
positive or negative coefficient.  
 
Step 4 Collect the data. Inspect and clean the data.  
A general rule regarding sample size is the more observations the better, as long as the observations 
are from the same general population. In regression analysis, all the variables must have the same 
number of observations. They also should have the same frequency and time period. Often, the 
frequency is determined by the availability of data.  
 
The reason there should be as many observations as possible concerns the statistical concept of 
degrees of freedom. Estimation of a line (page 76) takes place only when a straight line is fitted to 
three or more points that were generated by some process that is not exact. The excess of the 
number of observations (three) over the number of coefficients to be estimated (in this case two, the 
intercept and slope) is the degree of freedom. All that is necessary for estimation is a single degree 
of freedom, but the more degrees of freedom there are, the better. This is because when the 
number of degrees of freedom is large, every positive error is likely to be balances by a negative 
error. When degree of freedom are low, the random element is likely to fail to provide such 
offsetting observations.  
 

Degree of freedom The excess of the number of observations over the number of coefficients to be 
estimated  

Units of measurement 
of the variable 

All conclusions about signs, significance, and economic theory are independent 
of units of measurement.  

 
The final step before estimating your equation is to inspect and clean the data. You should make it a 
point always to look over your data set to see if you can find any errors. To inspect the data, obtain a 
printout and a plot (graph) of the data and look for outliers. In addition, it is a good habit to look at 
the mean, maximum, and minimum of each variable and then think about possible inconsistencies in 
the data.  
 

Outlier An observation that lies outside the range of the rest of the observations and 
looking for outliers is an easy way to find data entry errors.  

 
Typically, the data can be cleaned of these errors by replacing an incorrect number with the correct 
one. In extremely rare circumstances, an observation can be dropped from the sample, but only if 
the correct number cannot be found or if that particular observation clearly is not from the same 
population as the rest of the sample.  

– But: a regression needs to be able to explain all the observations in a sample, not just the 
well-behaved ones.  

 
 
 
Step 5 Estimate and evaluate the equation 
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Typically, estimation is done using OLS, but if another estimation technique is used the reason for 
that alternative technique should be carefully explained and evaluated. Once this evaluation is 
complete, do not automatically go to step 6. Regression results are rarely what one expects, and 
additional model development often is required. If you are missing an important variable, you need 
to go back to step 1. You’d then go through each of the steps in order until you had estimated your 
new specification in step 5. Finally, it is often worthwhile to estimate additional specifications of an 
equation in order to see how stable your observed results are (sensitivity analysis).  
 
Step 6 Document the results 
A standard format usually is used to present estimated regression results (page 79). For time series 
data sets, the documentation also includes the frequency (quarterly, annually) and the time period of 
the data. Most computer programs present statistics to eight or more digits, but it is important to 
recognize the difference between the number of digits computed and the number of meaningful 
digits, which may be as low as two or three.  
 
Example of the whole regression analysis process on page 80 – 88 (important to read).  
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Chapter 4: The classical model 
The term classical refers to a set of basic assumptions required to hold in order for OLS to be 
considered the best estimator available for regression models. When one or more of these 
assumptions do not hold, other estimation techniques (such as Generalized Least Squares) 
sometimes may be better than OLS. As a result, one of the most important jobs in regression analysis 
is to decide whether the classical assumptions hold for a particular equation.  
 

4.1 The classical assumptions 
The classical assumptions must be met for OLS estimators to be the best available. Because of their 
importance in regression analysis, the assumptions are presented here in tabular form as well as in 
words.  
 
The classical assumptions 

1. The regression model is linear, is correctly specified, and has an additive error term 
2. The error term has a zero population mean 
3. All explanatory variables are uncorrelated with the error term 
4. Observations of the error term are uncorrelated with each other (no serial correlation) 
5. The error term has a constant variance (no heteroskedasticity) 
6. No explanatory variable is a perfect linear function of any other explanatory variable(s) (no 

perfect multicollinearity) 
7. The error term is normally distributed (this assumption is optional but usually is invoked) 

 

Classical error term Error term satisfying assumptions I through V 

Classical normal error term Error term satisfying assumptions I through V and VII is added 

 
1) the regression model is linear, is correctly specified, and has an additive error term 
The regression model is assumed to be linear: 
 
Yi = 𝛽0 + 𝛽1𝑋1+ 𝛽2𝑋2 + … + 𝛽𝑘𝑋𝑘𝑖 + 𝜖𝑖 
 
The assumption that the regression model is linear does not require the underlying theory to be 
linear (could be exponential) 
 

Yi  = 𝑒𝛽0𝑋1
𝛽1𝑒𝜖1 

ln(Yi)  = 𝛽0 + 𝛽1ln(Xi) + 𝜖1 
 
if the variables are relabelled as 𝑌𝑖

∗ = ln(Yi) and 𝑋𝑖
∗= ln(Xi), then the form of the equation becomes 

linear 
 
𝑌𝑖

∗ = 𝛽0 + 𝛽1𝑋𝑖
∗ + 𝜖1 

 
2) The error term has a zero population mean 
Econometricians add a stochastic (random) error term to regression equations to account for 
variation in the dependent variable that is not explained by the model. The specific value of the error 
term for each observation is determined purely by chance. When the entire population of possible 
values for the stochastic error term is considered, the average value of that population is zero. For a 
small sample, it is not likely that the mean is exactly zero, but as the size of the sample approached 
infinity, the mean of the sample approached zero.  
 
To compensate for the chance that the mean of 𝜖 might not equal zero, the mean of 𝜖1 for any 
regression is forced to be zero by the existence of the constant term in the equation. In essence, the 
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constant term equals the fixed portion of Y that cannot be explained by the independent variables, 
whereas the error term equals the stochastic portion of the unexplained value of Y. although it’s true 
that the error term can never be observed, it’s instructive to pretend that we can do so to see how 
the existence of a constant term forces the mean of the error term to be zero in a sample.  
 
3) all explanatory variables are uncorrelated with the error term 
if an explanatory variable and the error term were instead correlated with each other, the OLS 
estimates would be likely to attribute to the X some of the variation in Y that came from the error 
term. As a result, it’s important to ensure that the explanatory variables are uncorrelated with the 
error term. One of the major components of the stochastic error term is omitted variables, so if a 
variable has been omitted, then the error term will change when the omitted variables change. If this 
omitted variable is correlated with an included independent variable, then the error term is 
correlated with that independent variable as well (violation assumption III).  
 
4) observations of the error term are uncorrelated with each other 
The observations of the error term are drawn independently from each other. If a systematic 
correlation exists between one observation of the error term and another, then it will be more 
difficult for OLS to get accurate estimates of the standard errors of the coefficients. This assumption 
is most important in time series models.  
 

Serial correlated If, over all the observations of the sample, 𝜖𝑡+1 is correlated with 𝜖𝑡. This is 
also called autocorrelated and this violates assumption IV.  

 
5) the error term has a constant variance (no heteroskedasticity) 
the observations of the error term are assumed to be drawn continually from identical distributions. 
The alternative would be for the variance of the distribution of the error term to change for each 
observation or range of observations (figure 2 violates assumption V). The lack of a constant variance 
for the distribution of the error term causes OLS to generate inaccurate estimates of the standard 
error of the coefficients (cross-sectional data).  
 

Heteroskedasticity The violation of assumption V 

 
6) no explanatory variable is a perfect linear function of any other explanatory variable(s) 

Perfect collinearity Between two independent variables implies that they are really the same 
variable, or that one is a multiple of the other, and/or that a constant has 
been added to one of the variables.  

 
Perfect collinearity is that the relative movements of one explanatory variable will be matched 
exactly by the relative movements of the other even though the absolute size of the movements 
might differ. Because every movement is matched exactly by a relative movement in the other, the 
OLS estimation procedure will be incapable of distinguishing one variable from the other.  
 
Many instances of perfect collinearity (or multicollinearity if more than two independent variables 
are involved) are the result of the researcher not accounting for identities (definitional equivalences) 
among the independent variables. This problem can be corrected easily by dropping one of the 
perfectly collinear variables from the equation. Perfect multicollinearity also can occur when two 
independent variables always sum to a third or when one of the explanatory variables does not 
change within the sample. With perfect multicollinearity, the OLS computer program (or any other 
estimation technique) will be unable to estimate the coefficients of the collinear variables (unless 
there is a rounding error).  
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7) the error term is normally distributed  
although we have already assumed that observations of the error term are drawn independently 
(assumption IV) from a distribution that has a zero mean (assumption II) and that has a constant 
variance (assumption V), we have said little about the shape of that distribution. Assumption VII 
states that the observations of the error term are drawn from a distribution that is normal.  
 
This assumption of normality is not required for OLS estimation. Its major application is in hypothesis 
testing, which used the estimated regression coefficient to investigate hypothesis about economic 
behaviour. Even though this assumption is optional, it’s usually advisable to add the assumption of 
normality to the other six assumptions for two reasons: 

1. The error term 𝜖𝑖 can be thought of as the sum of several minor influences or errors. As the 
number of these minor influences gets larger, the distribution of the error term tends to 
approach the normal distribution.  

2. The t-statistics and the F-statistics are not truly applicable unless the error term is normally 
distributed (or the sample is quite large).  

 
Standard normal distribution 

– Mean is 0 
– Variance is 1 

 

4.2 The sampling distribution of 𝛽̂ 
Each different sample of data typically produces a different estimate of 𝛽.  
 

Sampling distribution of 𝛽̂ The probability distribution of these 𝛽̂ values across different samples 

Estimator A formula, such as the OLS formula 

Estimate The value of 𝛽̂ computed by the formula for a given sample 

 
The collection of all the possible samples has a distribution, with a mean and a variance, and we need 

to discuss the properties of this sampling of distribution of 𝛽̂, even though in the most real 
applications we will encoder only a single draw from it. Sampling distribution refers to the 

distribution of different values of 𝛽̂ across different samples, not within one. These 𝛽̂s usually are 
assumed to be normally distributed because the normality of the error term implies that the OLS 
estimates of beta are normally distributed as well.  
 

Unbiasedness For a good estimation technique, we’d want the mean of the sampling 

distribution 𝛽̂s to be equal to our true population 𝛽.  

 

Properties of the mean 
A desirable property of a distribution of estimates is that its mean equals the true mean of the 
variable being estimated. An estimator that yields such estimates is called an unbiased estimator.  
 

Unbiased estimator An estimator 𝛽̂ is an unbiased estimator if its sampling distribution has as its expected 

value the true value of 𝛽 → E(𝛽̂) = 𝛽 

Biased estimator If an estimator produces 𝛽̂s that are not centered around the true 𝛽 

 

Only one value of 𝛽̂ is obtained in practice, but the property of unbiasedness is useful because a 
single estimate drawn from an unbiased distribution is more likely to be near the true value 
(assuming identical variances) than one taken from a distribution not centred around the true value. 
Without any information about the distribution of the estimates, we would always rather have an 
unbiased estimate rather than a biased one.  
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Properties of the variance 

Just as we would like the distribution of the 𝛽̂s to be centred around the true population of 𝛽, so too 
would we like that distribution to be as narrow (or precise) as possible. A distribution centred around 
the truth but with an extremely large variance might be of very little use because any given estimate 

would quite likely be far from the true 𝛽 value. For a 𝛽̂ with small variance, the estimates are likely to 
be close to the mean of the sampling distribution.  
 

The variance of the distribution of the 𝛽̂s can be decreased by increasing the size of the sample. This 
also increases the degrees of freedom, since the number of degrees of freedom equals the sample 
size minus the number of coefficients or parameters estimated. One method of deciding whether 

this decreased variance in the distribution of the 𝛽̂s is valuable enough to offset the bias is to 
compare different estimation techniques by using a measure called the mean square error (MSE).  
 

Mean Square Error Equal to the variance plus the square of the bias. The lower MSE, the better.  

 
A final item of importance is that as the variance of the error term increases, so too does the 

variance of the distribution of 𝛽̂.  
– Reason: with the larger variance of 𝜖𝑖, the more extreme values of 𝜖𝑖 are observed with 

more frequency, and the error term becomes more important in determining the values of Yi 
 

The standard error of 𝛽̂ 

Since the standard error of the estimated coefficient, SE (𝛽̂), is the square root of the estimated 

variance of the 𝛽̂s, it is similarly affected by the size of the sample and the other factors mentioned. 
The larger the sample, the more precise our coefficient estimates will be (smaller standard error).  
 

4.3 The Gauss-Markov Theorem and the properties of OLS estimators 
The Gauss-Markov theorem proves two important properties of OLS estimators. The Gauss-Markov 
theorem states that: 
 
Given Classical assumptions I through VI (assumption VII, normality, is not needed for this theorem), 
the Ordinary Least Squares estimator of 𝛽𝑘 is the minimum variance estimator from among the set of 
all linear unbiased estimators of 𝛽𝑘, for k = 0, 1, 2, …, K.  
 
The Gauss-Markov theorem (requires that only six out of seven assumptions are met) is most easily 
remembered by stating that OLS is BLUE 

– Best (meaning minimum variance) Linear Unbiased Estimator 
 
If an equation’s coefficient estimation is unbiased (that is, if each of the estimated coefficients is 
produced by an unbiased estimator of the true population coefficient), then: 
 

E(𝛽̂𝑘) = 𝛽𝑘 (k = 0, 1, 2, …, K) 
 

Best means that each 𝛽̂𝑘 has the smallest variance possible. An unbiased estimator with the smallest 
variance is called efficient, and that estimator is said to have the property of efficiency. If all seven 
assumptions are met in the Gauss-Markov theorem, the OLS is BUE (page 111).  
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Given all seven classical assumptions, the OLS coefficient estimators can be shown to have the 
following properties: 

1. They are unbiased 

– E(𝛽̂) = 𝛽 
2. They are minimum variance 
3. They are consistent 

– As the sample size gets larger, the variance gets smaller, and each estimate 
approaches the true value of the coefficient being estimated.  

4. They are normally distributed 

– The 𝛽̂s are N (𝛽, VAR[𝛽̂]).  
 
 

4.4 Standard Econometric Notation 
important (notation) see table page 112 
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Chapter 5: hypothesis testing 
Hypothesis testing determines what we can learn about the real world from a sample.  
 

t-test Statistical tool typically used for hypothesis rest of individual regression coefficients 

 
Our approach will be classical in nature, since we assume that the sample data are our best and only 
information about the population. An alternative, Bayesian statistics, used a completely different 
definition of probability and does not use the sampling distribution concept.  
 

5.1 what is hypothesis testing? 

Classical null and alternative hypotheses 
The first step in hypothesis testing is to state the hypotheses to be tested. This should be done 
before the equation is estimated because hypotheses developed after estimation run the risk of 
being justifications of results rather than tests of the validity of those.  
 

Null hypothesis A statement of the values that the researcher does not expect (H0) 

Alternative hypothesis A statement of the values that the researcher expects (HA) 

 
One-sided test  
H0:  𝛽 ≥ 0 
HA: 𝛽 < 0 
 
The above hypotheses are for a one-sided test because the alternative hypotheses have values on 
only one side of the null hypotheses. Another approach is to use a two-sided test (or a two-tailed 
test) in which the alternative hypothesis has values on both sides of the null hypothesis: 
 
Two-sided test 
H0:  𝛽 = 0 
HA: 𝛽 ≠ 0 
 
Classical hypothesis testing requires that the null hypothesis contains the equal sign in some form 
(whether it be =, ≤ or ≥). This requirement means that researchers are forced to put the value they 
expect in the null hypothesis if their expectations include an equal sign. Economists always put what 
they expect in the alternative hypothesis. This allows us to make rather strong statements when we 
reject a null hypothesis. However, we can never say that we accept the null hypothesis. We must 
always say that we cannot reject the null hypothesis.  
 

Type I and type II errors 
The typical testing technique in econometrics is to hypothesize an expected sign (or value) for each 
regression coefficient (except the constant term) and then to determine whether they reject the null 
hypothesis. Since the regression coefficients are only estimates of the true population parameters, it 
would be unrealistic to think that conclusions drawn from regression analysis will always be right. 
There are two kinds of errors we can make in such hypothesis testing (see figures on page 131): 

Type I error We reject a true null hypothesis (we have rejected the truth): 
Type I error consists of rejecting the null hypothesis when it is true. This is a very serious 
error that we want to seldomly make. We don't want to be very likely to conclude the 
experiment had an effect when it didn't.  
 

Type II error  We do not reject a false null hypothesis (we have failed to reject a false null hypothesis): 
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Type II error consists of failing to reject the null hypothesis when it is false. This error has 
less grievous implications, so we are willing to err in this direction. 

 

Decision rules of hypothesis testing 

Decision rule  A method of deciding whether to reject a null hypothesis 

Critical value A value that divides the acceptance region from the rejection region when testing a null 
hypothesis (graphed in figures on page 133) 

 
Typically, a decision rule involves comparing a sample statistic with a preselected critical value found 
in tables. A decision rule should be formulated before regression estimates are obtained. The range 

of possible values of 𝛽̂ is divided into two regions where the terms are expressed relative to the null 
hypothesis.  

1. Acceptance region 
2. Rejection region 

 

To define these regions, we must determine a critical value (or two for a two-tailed test) of 𝛽̂. If the 

observed 𝛽̂ is greater than the critical value, we can reject the null hypothesis that 𝛽 is zero or 

negative. This can be seen in figure 3: any 𝛽̂ above 1.8 can be seen to fall into the rejection region, 

whereas any 𝛽̂ below 1.8 can be seen to fall into the acceptance region.  
 
Decreasing the chance of a Type I error means increasing the chance of a Type II error (not rejecting 
a false null hypothesis). This is because if you make the rejection region so small that you almost 
never reject a true null hypothesis, then you’re going to be unable to reject almost every null 
hypothesis, whether they are true or not. As a result, the probability of a type II error will rise.  
 

5.2 the t-test 
the t-test is the test that econometricians usually use to test hypotheses about individual regression 
slope coefficients. Tests of more than one coefficient at a time (joint hypotheses) are typically done 
with the F-test. The t-test is easy to use because it accounts for differences in the units of 
measurement of the variables and in the standard deviation of the estimated coefficients. More 
important, the t-statistics is the appropriate test to use when the stochastic error term is normally 
distributed and when the variance of that distribution must be estimated.  
 

The t-statistics 
For a statistical multiple regression equation 
 
Yi = 𝛽0 + 𝛽1𝑋1𝑖 +  𝛽2𝑋2𝑖 + ∈𝑖 
 
We can calculate t-values for each of the estimated coefficients in the equation. The t-tests are 
usually done only on the slope on the coefficients. For these, the relevant form of the t-statistics for 
the kth coefficient is 
 

tk = 
(𝛽̂𝑘−𝛽̂𝐻0)

𝑆𝐸(𝛽̂𝑘)
  (k = 1, 2, …, K) 

 
where; 

– 𝛽̂𝑘  =  the estimated regression coefficient of the kth variable 

– 𝛽̂𝐻0
 =  the border value (usually zero) implied by the null hypothesis for 𝛽̂𝑘 

– 𝑆𝐸(𝛽̂𝑘)=  the estimated standard error of 𝛽̂𝑘 (square root of the estimated variance of  

   𝛽̂𝑘). There is no hat attached to SE, because SE is already an estimate.  
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Since most regression hypotheses test whether a particular regression coefficient is significantly 

different from zero,  𝛽̂𝐻0
 is typically zero, and the most-used form of the t-statistics becomes 

 

tk = 
(𝛽̂𝑘−0)

𝑆𝐸(𝛽̂𝑘)
 = 

𝛽̂𝑘

𝑆𝐸(𝛽̂𝑘)
   (k = 1, 2, …, K) 

 
this is the estimated coefficient divided by the estimate of its standard error. Note that the sign of 
the t-value is always the same as that of the estimated coefficient of P, the population variable. The 
larger the absolute value of the t-value is, the greater the likelihood that the estimated regression 
coefficient is significantly different from zero.  
 

The critical t-value and the t-test decision rule 

Critical t-value The value that distinguished the acceptance region from the rejection region 

Degrees of freedom The number of observations minus the number of coefficients estimated (N – K – 1) 

 
The critical t-value (tc) is selected from a t-table depending on whether the test is one-sides or two-
sided, on the level of Type I error you specify and on the degrees of freedom. The level of type I error 
is also called the level of significance of that test. A critical t-value tc is thus a function of the 
probability of Type I error that the researcher wants to specify.  
 
Once you have obtained a calculated t-value tk and a critical t-value tc, you can reject the null 
hypothesis if the calculated t-value is greater in absolute value than the critical t-value and if the 
calculated t-value has the sign implied by HA. Thus, the rule to apply when testing a single regression 
coefficient is that you should: 
 
Reject H0 if |tk| > tc and if tk also has the sign implied by HA. do not reject H0 otherwise.  
The decision rule is the same: reject the null hypothesis if the appropriately calculated t-value tk is 
greater in absolute value than the critical t-value tc, if the sign of tk is the same as the sign of the 
coefficient implied in HA. Otherwise, do not reject H0. Note from statistical table B-1 that the critical 
t-value for a one-tailed test at a given level of significance is exactly equal to the critical t-value for a 
two-tailed test at twice the level of significance as the one-tailed test.  
 

Choosing a level of significance 
The words statistically positive usually carry the statistical interpretation that H0 was rejected in 
favour of HA according to the pre-established decision rule, which was set up with a given level of 
significance.  
 

Level of 
significance  

Indicates the probability of observing an estimated t-value greater than the critical t-value if 
the null hypothesis were correct.  

 
An extremely low level of significance dramatically increases the probability of making a Type II error. 
Therefore, unless you are in the unusual situation of not caring out mistakenly accepting a false null 
hypothesis, minimizing the level of significance is not good standard practice. Instead, we 
recommend using a 5-percent level of significance except in those circumstances when you know 
something unusual about the relative costs of making Type I and Type II errors.  
 
Some researchers avoid choosing a level of significance by simply stating the lowest level of 
significance possible for each estimated regression coefficient. The use of the resulting significance 
levels, called p-values, is an alternative approach to the t-test.  
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Other researchers produce tables of regression results, typically without hypothesized signs for their 
coefficients, and then mark significant coefficients with asterisks. 
 

Asterisks  Indicate when the lowest t-score is larger in absolute value than the two-sided 10-percent critical 
value (*), the two-sided 5-percent value (**), or the one-sided 1-percent critical value (***) 

 
Now and then researchers will use the phrase degree of confident or level of confidence (has similar 
meaning as level of significance) when they rest hypotheses.  
 

Level of confidence  100 percent minus the level of significance (t-test 5% significance → 95% confidence) 

 

Confidence intervals 

Confidence interval  A range that contains the true value of an item a specified percentage of the time; 
Confidence intervals consist of a range of values (interval) that act as good estimates of 
the unknown population parameter; however, the interval computed from a particular 
sample does not necessarily include the true value of the parameter.  

 
This percentage is the level of confidence associated with the level of significance used to choose the 
critical t-value in the interval. For an estimated regression coefficient, the confidence interval can be 
calculated using the two-sided critical t-value and the standard error of the estimated coefficient  
 

Confidence interval = 𝛽̂  ±  𝑡𝑐  𝑥 𝑆𝐸(𝛽̂)     (example on page 141) 
 

p-values 
there is an alternative approach to the t-test. A p-value (or marginal significance level) for a t-score is 
the probability of observing a t-score that size or larger (in absolute value) if the null hypothesis were 
true. Graphically, it is the area under the curve of t-distribution between the actual t-score and 
infinity. A p-value is a probability, so it runs from 0 to 1.  
 
  

p-value  Tells us the lowest level of significance at which we could reject the null hypothesis (assuming that 
the estimate is in the expected direction)   

 
A small p-value casts doubt on the null hypothesis, so to reject a null hypothesis, we need a low p-

value. You can read p-values off your regression output just as you would your 𝛽̂s (mostly presented 
for two-sided alternative hypotheses). If your test is one-sided, you need to divide the p-value in your 
regression output by 2 before doing any tests. The p-value decision rule (page 142): 
 

Reject H0 if p-valueK < the level of significance and if 𝜷̂K has the sign implied by HA.  
 
p-values have several advantages 

– easy to use 
– allow readers of research to choose their own level of significance instead of being forced to 

use the level chosen by the original researcher.  
– Convey information to the reader about the relative strength with which we can reject a null 

hypothesis 
 
If you know how to use the standard t-test approach, it is easy to switch to the p-value approach, but 
the reverse is not necessarily true. Therefore, beginning researchers should use t-tests.  
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5.3 examples of t-tests 

Examples of one-sided t-tests 
The most common use of one-sided t-tests is to determine whether a regression coefficient is 
significantly different from zero in the direction predicted by theory. The four steps to use when 
working with the t-test are 

1. Set up the null and alternative hypotheses 
– Remember that a t-test typically is not run on the estimate of the constant term 𝛽0 

2. Choose a level of significance and therefore a critical t-value 
– Note that the level of significance does not have to be the same for all the coefficients 

in the same regression equation 
3. Run the regression and obtain an estimated t-value (or t-score) 

– Note that since standard errors are always positive, a negative estimated coefficient 
implies a negative t-value.  

4. Apply the decision rule by comparing the calculated t-value with the critical t-value in order 
to reject or not reject the null hypothesis.  

 

Examples of two-sided t-tests 
Although most hypotheses in regression analysis should be tested with one-sided t-tests, two-sided 
t-tests are appropriate situations. The kinds of circumstances that call for a two-sided test fall into 
two categories 

1. Two-sided tests of whether an estimated coefficient is significantly different from zero. 
– A two-sided test implies two different rejection regions surrounding the acceptance 

region. There is an advantage to testing hypotheses with a one-sided test if the 
underlying theory allows because, for the same t-values, the possibility of type I error 
is half as much for a one-sided test as for a two-sided test.  

2. Two-sided tests of whether an estimated coefficient is significantly different from a specific 
nonzero value.  
– Since the hypothesized 𝛽 value is no longer zero, the formula with which to calculate 

the estimated t-value is now tk = 
(𝛽̂𝑘−𝛽̂𝐻0)

𝑆𝐸(𝛽̂𝑘)
. 

 

5.4 Limitations of the t-test 
Problems with the t-test 

– It is easy to misuse 
– The usefulness of the t-test diminishes rapidly as more and more specifications are estimated 

and tested.  
 

The t-test does not test theoretical validity 
Recall that the purpose of the t-test is to help the researcher make inferences about a particular 
population coefficient based on an estimate obtained from a sample of a particular population. Some 
beginning researchers conclude that any statistically significant result is also a theoretically correct 
one. This is dangerous because such a conclusion confuses statistical significance with theoretical 
validity.  
 

The t-test does not test importance 
One possible use of a regression equation is to help determine which independent variable has the 
largest relative effect (importance) on the dependent variable. Some beginning researchers draw the 
unwarranted conclusion that the most statistically significant variable in their estimated regression is 
also the most important in terms of explaining the largest portion of the movement of the 
dependent variable. Statistical significance indicates the likelihood that a particular sample result 
could have been obtained by chance, but it says little – if anything – about which variables determine 
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the major portion of the variation in the dependent variable. To determine importance, a measure 
such as the size of the coefficient multiplied by the average size of the independent variable or 
standard error of the independent variable would make much more sense. 
 

The t-test is not intended for tests of the entire population 
The t-test helps make inferences about the true value of a parameter from an estimate calculated 
from a sample of the population (the group from which the sample is being drawn). Read page 154. 
The standard error will approach zero as the sample size approaches infinity. Thus, the t-score will 
eventually become 
 

t =  
𝛽

0
=  ∞ 

 
the mere existence of a large t-score for a huge sample has no real substantive significance, because 
of the sample size is large enough, you can reject almost any null hypothesis.  
 

5.6 Appendix: The F-test 
although the t-test is invaluable for hypotheses about individual regression coefficients, it cannot be 
used to test multiple hypotheses simultaneously. To test multiple hypotheses, most researchers 
would use the F-test.  
 

What is the F-test? 

F-test Formal hypothesis test that is designed to deal with a null hypothesis that contains multiple 
hypotheses or a single hypothesis about a group of coefficients 

 
The way in which the F-test works is ingenious 

1. Translate the null hypothesis in question into constraints that will be placed on the equation. 
The resulting constrained equation can be thought of as what the equation would look like if 
the null hypothesis were correct.  
– In F-test, the H0 always leads to a constrained equation, even if this violates our 

standard practice that the alternative hypothesis contains what we expect is true 
2. Estimate the constrained equation with OLS and compare the fit of this constrained equation 

with the fit of the unconstrained equation.  
– Of the fits of the constrained equation and the unconstrained equation are not 

significantly different, the null hypothesis should not be rejected.  
– If the fit of the unconstrained equation is significantly better than that of the 

constrained equation, then we reject the null hypothesis.  
 
The fit of the constrained equation is never superior to the fit of the unconstrained equation. The fits 
of the equations are compared with the general F-statistics 
 

F = 
(𝑅𝑆𝑆𝑀−𝑅𝑆𝑆)

𝑀
𝑅𝑆𝑆

(𝑁−𝐾−1)

 

 
Where; 

– RSS =  residual sum of squares from the unconstrained equation 
– RSSM =   residual sum of squared from the constrained equation 
– M =   number of constraints placed on the equation (usually equal tot eh number  

of 𝛽s eliminated from the unconstrained equation) 
– (N – K – 1) =  degrees of freedom in the unconstrained equation 
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RSSM is always greater than or equal to RSS. Imposing constraints on the coefficients instead of 
allowing OLS to select their values can never decrease the summed squared residuals. Recall that OLS 
selects that combination of values of the coefficients that minimizes RSS). As the difference between 
the constrained coefficients and the unconstrained coefficients increases, the data indicates that the 
null hypothesis is less likely to be true. The decision rule to use the F-test is to reject the null 
hypothesis if the calculated F-value (F) from the equation above is greater than the appropriate 
critical F-value (Fc).  
 
Reject  H0  if F > Fc 
Do not reject H0 if F ≤ Fc 

 

The critical F-value Fc is determined from the tables and depends on a level of significance chosen by 
the researcher and on the degrees of freedom. The F-statistic has two types of degrees of freedom: 

1. degrees of freedom for the numerator (M, the number of constraints implies by H0) 
2. degrees of freedom for the denominator (N – K – 1, the degrees of freedom in regression 

equation) 
 

The F-test of overall significance 
Although R2 and 𝑅̅2 measure the overall degree of fit of an equation, they do not provide a formal 
hypothesis test of that overall fit. Such a test is provided by the F-test. The null hypothesis in an F-
test of overall significance is that all the slope coefficients in the equation equal zero simultaneously.  
 
H0: ß1 = ß2 = … = ßK = 0 
HA: H0 is not true 
 
To show that the overall fit of the estimated equation is statistically significant, we must be able to 
reject this null hypothesis using the F-test. For the F-test of overall significance, the equation above 
simplifies to: 
 

F = 
𝐸𝑆𝑆

𝐾
𝑅𝑆𝑆

(𝑁−𝐾−1)

=  
∑(𝑌̂𝑖− 𝑌̅)2

𝐾

∑ 𝑒𝑖
2

(𝑁−𝐾−1)

 

 
In this case, the constrained equation to which we are comparing the overall fit is: 
 
Yi = ß0 + 𝜖𝑖 
 

Which is nothing more than saying 𝑌̂𝑖 =  𝑌̅. Thus, the F-test of the overall significance is testing the 
null hypothesis that the fit of the equation is not significantly better than that provided by using the 
mean alone. Just as p-values provide an alternative approach to the t-test, so too can p-values 
provide an alternative approach to the F-test of overall significance.  
 

Other uses of the F-test 
There are many other uses of the F-test besides the test of overall significance. For example, let’s 
look at a Cobb-Douglas production function (see page 169 – 172): 
 
Qt = ß0 + ß1Lt + ß2Kt + 𝜖𝑡 
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Chapter 7: specification: choosing a functional form 

7.2 Alternative functional forms 
there are different functional forms (summed on page 234) 

– linear functional form 
– double-log functional form 
– semi log functional form 

– polynomial functional form 
– inverse functional form 

 
before we can talk about functional forms, we need to make a distinction between an equation that 
is linear in the coefficients and one that is linear in the variables. An equation is linear in the 
variables if plotting the function in terms of X and Y generates a straight line.  
 
Y = ß0 + ß1X + 𝜖  (linear in the variables and linear in the coefficients) 
Y = ß0 + ß1X2 + 𝜖  (not linear in the variables → not a straight line) 
Y = ß0 + Xß1   (not linear in the coefficients) 
 
An equation is linear in the coefficients only if the coefficients (the ßs) appear in their simplest form  

– they are not raised to any powers (other than one) 
– they are not multiplied or divided by other coefficients 
– they do not themselves include some sort of function (like logs or exponents) 

 
in fact, of all possible equations for a single explanatory variable, only function of the general form: 
 
f(Y) = ß0 + ß1f(X) 
 
are linear in the coefficients ß0 and ß1. Linear regression analysis can be applied to an equation that is 
nonlinear in the variables as long as the equation is linear in the coefficients. When econometricians 
use the phrase linear regression, they usually mean regression that is linear in the coefficients.  
 
The choice of a functional form almost always should be based on the underlying theory and only 
rarely on which form provides the best fit. The logical form of the relationship between the 
dependent variable and the independent variable in question should be compared with the 
properties of various functional forms, and the one that comes closest to that underlying theory 
should be chosen.  
 

Linear form 
The linear regression model assumes that the slope of the relationships between the independent 
variable and the dependent variable is constant: 
 

𝑌

∆𝑋𝑘
=  𝛽𝐾  (k = 1, 2, …, K) 

 
if the hypothesized relationship between Y and X is such that the slope of the relationship can be 
expected to be constant, then the linear function form should be used. Since the slope is constant, 
the elasticity of Y concerning X can be calculated with: 
 

Elasticity𝑌,𝑋𝐾
=  

∆𝑦/𝑦 

∆𝑋𝑘/𝑋𝑘
=  

∆𝑌

∆𝑋𝑘
𝑥

𝑋𝑘

𝑌
=  𝛽𝑘

𝑋𝑘

𝑌
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Double-log form 
The double-log form is the most common functional form that is nonlinear in the variables while still 
being linear in the coefficients. In a double-log functional form, the natural log of Y is the dependent 
variable, and the natural log of X is the independent variable: 
 
lnY = ß0 + ß1lnX1 + ß2lnX2 + 𝜖  
 
the double-log form, sometimes called the log-log form, often is used because a researcher has 
specified that the elasticities of the model are constant, and the slopes are not. This is in contrast to 
the linear model, in which the slopes are constant, but the elasticities are not. In a double-log 
equation, an individual regression coefficient can be interpreted as an elasticity because: 
 

ßk = 
∆(lnY)

∆(lnXk)
=  

∆𝑦/𝑦 

∆𝑋𝑘/𝑋𝑘
 =  elasticity𝑌,𝑋𝐾

 

 
since regression coefficients are constant, the condition that the model has a constant elasticity is 
met by the double-log equation. The way to interpret ßk in a double-log equation is that if Xk 
increases by 1 percent while the other Xs are held constant, then Y will change by ßk percent. Since 
elasticities are constant, the slopes are now no longer constant. See figure 2 on page 227.  
 
Double-log models should be run only when the logged variables take on positive values. Dummy 
variables, which can take on the value of zero, should not be logged but still can be used in a double-
log equation if they are adjusted.  
 

Semi log form 
The semi-log functional form is a variant of the double-log equation in which some but not all the 
variables (dependent and independent) are expressed in terms of their natural logs: 
 
Y = ß0 + ß1lnX1 + ß2X2i + 𝜖𝑖 
 
Read page 228. Not all semi log functions have the log on the right-hand side of the equation. The 
alternative semi-log form is to have the log on the left-hand side of the equation. This would mean 
that the natural log of Y would be a function of unlogged values of the Xs  
 
lnY = ß0 + ß1X1 + ß2X2 + 𝜖 
 
this model has neither a constant slope nor a constant elasticity, but the coefficients do have a very 
useful interpretation. If Xi increases by one unit, then Y will change in percentage terms. Specifically, 
Y will change by ß1 * 100 percent, holding X2 constant, for every unit that X1 increases.  
 

Polynomial form 
In most functions, the slope of the cost curve changes sign as output changes. If the slopes of a 
relationship are expected to depend on the level of the variable itself, then a polynomial model 
should be considered. Polynomial functional forms express Y as a function of independent variables, 
some of which are raised to powers other than 1.  
 
Y1 = ß0 + ß1X1i + ß2(X1i)2 + ß3X2i + 𝜖i 
 
The slope of Y with respect to X1 is 
∆𝑌

∆𝑋1
=  𝛽1 + 2𝛽2𝑋1  
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note that the slope depends on the level of X1. With polynomial regressions, the interpretation of the 
individual regression coefficients become difficult, and the equation may produce unwanted results 
for ranges of X. Great care must be taken when using a polynomial regression equation to ensure 
that the functional form will achieve what is intended by the researcher and no more. 

Inverse form 
The inverse functional form expresses Y as a function of the reciprocal (or inverse) of one or more of 
the independent variables (in this case X1) 
 
Y1 = ß0 + ß1(1/X1i) + ß2X2i + 𝜖i 

 

The inverse functional form should be used when the impact of a particular independent variable is 
expected to approach zero as that independent variable approaches infinity. In the equation above, 
X1 cannot equal zero, since if X1 equalled zero, dividing it into anything would result in infinite or 
undefined values. The slope with respect to X1 is: 
 
∆𝑌

∆𝑋1
=  

−𝛽1

𝑋1
2   

 
the slopes for X1 fall into two categories, both shown in figure 5 (page 233): 

1. when ß1 is positive, the slope with respect to X1 is negative and decreases in absolute value 
as X1 increases. As a result, the relationship between Y and X1 holding constant X2 
approaches ß0 + ß2X2 as X1 increases (ignoring the error term).  

2. When ß1 is negative, the relationship intersects the X1 axis at 
−𝛽1

(𝛽0 + 𝛽2𝑋2)
 and slopes upward 

toward the same horizontal line (called asymptote) that is approaches when ß1 is positive.  
 

Choosing a functional form 
The best way to choose a functional form for a regression model is to choose a specification that 
matches the underlying theory of the equation.  
 

7.4 Using dummy variables 
A dummy variable is one that takes on values of 0 or 1 (gender).  
 

Intercept dummy We can use dummy variables as an intercept dummy, a dummy variable that changes 
the constant or intercept term, depending on whether the qualitative condition is met 

 
These take the general form 
 
Yi = ß0 + ß1Xi + ß2Di + 𝜖i 

 
Where; 

– Di = 1 if it observation meets a particular condition and 0 otherwise.  
 
The intercept dummy does change the intercept depending on the value of D, but the slopes remain 
constant no matter what value D takes. The event not explicitly represented by a dummy variable, 
the omitted condition, forms the basis against which the included conditions are compared.  
 
What would happen if you used two dummy variables to describe the two conditions? 
Suppose: X1 = 1 is a person is a male and X2 = 1 if a person is female. In such a situation, X1 plus X2 
would always add up to 1. Thus, X1 would be perfectly, linearly correlated with X2 and the equation 
would violate Classical Assumption VI. If you were to make this mistake, sometimes called a dummy 
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variable trap, you’d have perfect multicollinearity and OLS almost surely would fail to estimate the 
equation.  
 
Create one less dummy variable than there are alternatives and to use each dummy to represent just 
one of the possible conditions. Dummy variables can be used as dependent variables. Read page 238.  

 

7.5 slope dummy variables 
Yi = ß0 + ß1Xi + ß2Di + 𝜖i 

 
In this equation X is multiplied only by ß1, and D is multiplied only by ß2, and there are no other 
factors involved. This restriction does not apply to the interaction term. 
 

Interaction term An independent variable in a regression equation that is the multiple of two or more 
other independent variables. 

 
Each interaction term has its own regression coefficient, so the result is that the interaction term has 
three or more components, as in ß3XiDi. interaction terms can involve two quantitative variables 
(ß3X1X2) or two dummy variables (ß3D1D2), but the most frequent application of interaction terms 
involves one quantitative variable and one dummy variable (ß3X1D1), a combination that is typically 
called a slope dummy.  
 

Slope dummy 
variables 

Allow the slope of the relationship between the dependent and an independent variable 
to be different depending on whether the condition specified by a dummy variable is met 

 
This contrasts with an intercept dummy variable, which changes the intercept but does not change 
the slope when a general condition is met. In general, a slope dummy is introduced by adding to the 
equation a variable that is the multiple of the independent variable that has a slope you want to 
change and the dummy variable that you want to cause the changed slope. The general form of a 
slope dummy equation is: 
 
Yi = ß0 + ß1Xi + ß2Di + ß3XiDi + 𝜖i 

 
When  

– D = 0  ∆Y/∆X = ß1 
– D = 1 ∆Y/∆X = (ß1 + ß3) 

 
In essence, the coefficient of X changes when the condition specified by D is met.  
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Chapter 8: multicollinearity 

Perfect multicollinearity Violation of Classical Assumption VI – that no independent variable is a perfect 
linear function of one or more other independent variables.  

 
In essence, the more highly correlated two (or more) independent variables are, the more difficult it 
becomes to accurately estimate the coefficients of the true model.  
 

8.1 Perfect versus imperfect multicollinearity 

Perfect multicollinearity Violates Classical Assumption VI, which specifies that no explanatory variable is a 
perfect linear function of any other explanatory variables.  

 
The perfect in this context implies that the variation in one explanatory variable can be completely 
explained by movements in another explanatory variable: 
 
X1i = 𝛼0 +  𝛼1𝑋2𝑖 
 
Where the 𝛼s are constants and the Xs are independent variables in: 
 
Yi = ß0 + ß1X1i + ß2X2i + 𝜖𝑖 
 
Notice that there is no error term in the first equation. This implies that X1 can be exactly calculated 
given X2 and the equation. With perfect multicollinearity, OLS is incapable of generating estimates of 
the regression coefficients, and most OLS computer programs will print out an error message in such 
a situation. Perfect multicollinearity ruins our ability to estimate the coefficients because the two 
variables cannot be distinguished. A special case related to perfect multicollinearity occurs when a 
variable that is definitionally related to the dependent variable is included as an independent 
variable in a regression equation. Such a dominant variable is so highly correlated with the 
dependent variable that it completely masks the effect of all other independent variables in the 
equation.  
 

imperfect 
multicollinearity 

A linear functional relationship between two or more independent variables that is so 
strong that it can significantly affect the estimation of the coefficients of the variables.   

 
Imperfect multicollinearity occurs when two (or more) explanatory variables are imperfectly linearly 
related, as in: 
 
X1i = 𝛼0 +  𝛼1𝑋2𝑖 + ui 
 
Where ui is a stochastic error term. Imperfect multicollinearity is a strong linear relationship between 
the explanatory variables. The stronger the relationship between the two (or more) explanatory 
variables, the more likely it is that they’ll be considered significantly multicollinear. Read page 265.  
 

8.2 the consequences of multicollinearity 
OLS estimators are BLUE if the Classical Assumptions hold. This means that OLS estimates can be 
thought of as being unbiased and having minimum variance possible for unbiased linear estimators. 
 

What are the consequences of multicollinearity? 
The major consequences of multicollinearity are (page 266 – 268): 

1. Estimates will remain unbiased 
2. The variances and standard errors of the estimates will increase 
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3. The computed t-score will fall 

– tk = 
(𝛽̂𝑘−𝛽̂𝐻0)

𝑆𝐸(𝛽̂𝑘)
 

– multicollinearity increases the standard error of the estimated coefficients, and if the 
standard error increases, then the t-score must fall.  

4. Estimates will become very sensitive to changes in specification 
5. The overall fit of the equation and the estimation of the coefficients of non-multicollinear 

variables will be largely unaffected. 
– The overall fit is measured by 𝑅̅2 and this will not fall much, if at all, in the face of 

significant multicollinearity.  
 

8.3 The detection of multicollinearity 
a first step is to recognize that some multicollinearity exists in every equation (determine how much 
multicollinearity exists in an equation, not whether any multicollinearity exists). A second key point is 
that the severity of multicollinearity in each equation can change from sample to sample depending 
on the characteristics of the sample. As a result, the theoretical underpinnings of the equation are 
not quite as important in the detection of multicollinearity as they are in the detection of an omitted 
variable or an incorrect functional form. Because multicollinearity is a sample phenomenon, and the 
level of damage of its impact is a matter of degree, many of the methods used to detect it are 
informal tests without critical values or levels of significance.  
 

High simple correlation coefficients 
One way to detect severe multicollinearity is to examine the simple correlation coefficients between 
the explanatory variables. If an r is high in absolute value, then we know that these two Xs are quite 
correlated, and that multicollinearity is a potential problem. r is high is it causes unacceptably large 
variances in the coefficient estimates in which we are interested. But be careful. The use of simple 
correlation coefficients as an indication of the extent of multicollinearity involves a major limitation if 
there are more than two explanatory variables. As a result, simple correlation coefficients must be 
sufficient but not necessary tests for multicollinearity. Although a high r does indeed indicate the 
probability of severe multicollinearity, a low r by no means proves otherwise.  
 

High variance inflation factors (VIFs) 
The use of tests to give an indication of the severity of multicollinearity in a particular sample is 
controversial. One measure of severity of multicollinearity that is easy to use and that is gaining 
popularity is the variance inflation factor. 
 

Variance inflation factor A method of detecting the severity of multicollinearity by looking at the extent to 
which a given explanatory variable can be explained by all the other explanatory 
variables in the equation 

 
The VIF is an index of how much multicollinearity has increased the variance of an estimated 
coefficient. A high VIF indicates that multicollinearity has increased the estimate variance of the 
estimated coefficient by quite a bit, yielding a decreased t-score. 
 
 
 
Suppose you want to use the VIF to attempt to detect multicollinearity in an original equation with K 
independent variables: 
 
Y = ß0 + ß1X1 + ß2X2

  + … + ßkXK + 𝜖 
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Calculating the VIF for a given Xi involves two steps: 
1. Run an OLS regression that has Xi as a function of all the other explanatory variables in the 

equation. For i = 1, this equation would be: 
– X1

 = 𝛼1 +  𝛼2𝑋2 +  𝛼3𝑋3 + ⋯ +  𝛼𝑘𝑋𝑘 + 𝑣 
– Thus there are K auxiliary regressions, one for each independent variable in the 

original equation. 

2. Calculate the variance inflation factor for 𝛽̂𝑖 

– VIF(𝛽̂𝑖) =
1

(1−𝑅𝑖
2)

 

 
Where; 

- v: stochastic error term 
- R2: coefficient of determination of the auxiliary regression in step one 

- 𝑅𝑖
2: separate auxiliary regression for each independent variable in the original equation 

 
 
the higher the VIF, the more severe the effects of multicollinearity.  

- 𝑅𝑖
2 = 1: indicating perfect multicollinearity, produces a VIF of infinity 

- 𝑅𝑖
2 = 0: indicating no multicollinearity at all, produces a VIF of 1.  

 
While there is no table of formal critical VIF values, a common rule of thumb is that if VIF(ßi) > 5, the 
multicollinearity is severe. As the number of independent variables increases, it makes sense to 
increase this number slightly.  
 

Some authors and statistical software programs replace the VIF with its reciprocal, (1 - 𝑅𝑖
2), called 

tolerance (or TOL). Whether calculating VIF or TOL is a matter of personal preference. Unfortunately, 
there are a couple of problems with using VIFs.  

1. There is no hard-and-fast VIF decision rule.  
2. It is possible to have multicollinear effects in an equation that has no large VIFs 

 
So, there is no test that allows a researcher to reject the possibility of multicollinearity with any real 
certainty.  

 

Chapter 9: serial correlation 

9.1 pure versus impure serial correlation 

Pure serial correlation Occurs when classical assumption IV, which assumes uncorrelated observations 
of the error term, is violated in a correctly specified equation 

 
Assumption IV implies that: 
 
E(𝑟𝜖𝑖𝜖𝑗

) = 0 and (I ≠ J) 

 
If the expected value of the simple correlation coefficient between any two observations of the error 
term is not equal to zero, then the error term is said to be serially correlated. When econometricians 
use the term serial correlation without any modifier, they are referring to pure serial correlation. The 
most assumed kind of serial correlation is first-order serial correlation, in which the current value of 
the error term is a function of the previous value of the error term: 
 
𝜖𝑡 =  𝜌𝜖𝑡−1 + 𝑢𝑡  
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Where; 

- 𝜖: the error term of the equation in question 
- 𝜌: the first-order autocorrelation coefficient 
- 𝑢: a classical (not serially correlated) error term 

 
𝜌 measures the functional relationship between the value of an observation of the error term and 
the value of the previous observation of the error term. The magnitude of 𝜌 indicates the strength of 
the serial correlation in an equation: 

- 𝜌 = 0: then there is no serial correlation (because 𝜖 would equal u, a classical error term) 
- 𝜌 = |1| the value of the previous observation of the error term becomes more important in  

determining the value of 𝜖𝑡, and a high degree of serial correlation exists 
 
for 𝜌 to be greater than one in absolute value is unreasonable because it implies that the error term 
has a tendency to continually increase in absolute value over time (explode). We can state that: 
 
– 1 < 𝜌 < + 1 
 
the sign of 𝜌 indicates the nature of the serial correlation in an equation.  

Positive serial correlation A positive value for 𝜌 implies that the error term tends to have the same sign 
from one period to the next 

Negative serial correlation A negative value for 𝜌 implies that the error term has a tendency to switch 
sign from negative to positive and back again in consecutive observations 

 
In most time-series applications however, negative pure serial correlation is much less likely than 
positive pure serial correlation. As a result, most econometricians analysing pure serial correlation 
concern themselves primarily with positive serial correlation. Serial correlation can take on many 
forms other than first-order serial correlation.  
 

Seasonally based 
serial correlation 

In a quarterly model, for example, the current quarter’s error term observation may 
be functionally related to the observations of the error term in the previous year 

Second-order serial 
correlation 

It is possible that the error term in an equation might be a function of more than one 
previous observation of the error term 

 
 
Seasonally based serial correlation: 

- 𝜖𝑡 =  𝜌𝜖𝑡−4 + 𝑢𝑡  
 

second-order serial correlation: 
- 𝜖𝑡 =  𝜌1𝜖𝑡−1 +  𝜌2𝜖𝑡−2 + 𝑢𝑡  

Impure serial correlation 

Impure serial 
correlation 

Correlation that is caused by a specification error such as an omitted variable or an 
incorrect functional form 

 
While pure serial correlation is caused by the underlying distribution of the error term of the true 
specification of an equation (which cannot be changed by the researcher), impure serial correlation 
is caused by a specification error that often can be corrected. 
 
The error term can be thought of as the effect of omitted variables, nonlinearities, measurement 
errors, and pure stochastic disturbances on the dependent variable. The error term for an incorrectly 
specified equation thus includes a portion of the effect of any omitted variables and/or a portion of 
the effect of the difference between the proper functional form and the one chosen by the 
researcher.  
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The proper remedy for serial correlation depends on whether the serial correlation is likely to be 
pure or impure. Not surprisingly, the best remedy for impure serial correlation is to attempt to find 
the omitted variable (or at least a good proxy) or the correct functional form of the equation. Both 
the bias and the impure serial correlation will disappear if the specification error is corrected. As a 
result, most econometricians try to make sure they have the best specification possible before they 
spend too much time worrying about pure serial correlation. Example page 327 – 329.  
 

9.2 The consequences of serial correlation 
serial correlation is more likely to have internal symptoms. It affects the estimated equation in a way 
that is not easily observable from an examination of just the results themselves. The existence of 
serial correlation in the error term of an equation violates Classical Assumption IV, and the 
estimation of the equation with OLS has at least three consequences: 

1. pure serial correlation does not cause bias in the coefficient estimates 
– if the serial correlation is impure bias may be introduced using an incorrect 

specification 

– unbiased in this case is that the distributions of the 𝛽̂ is still centered around the true ß 
2. serial correlation causes OLS to no longer be the minimum variance estimator (of all the 

linear unbiased estimators) 
– the serially correlated error term causes the dependent variable to fluctuate in a way 

that the OLS estimation procedure sometimes attributes to the independent variables 

3. serial correlation causes the OLS estimates of the SE(𝛽̂)s to be biased, leasing to unreliable 
hypothesis testing 

– biased SE(𝛽̂)s cause biased t-scores and unreliable hypothesis testing in general 

– typically, the bias in the estimate of SE(𝛽̂) is negative, meaning that OLS 
underestimates the size of the SE of the coefficients. This comes about because serial 
correlation usually results in a pattern of observations that allows a better fit than the 
actual (not serially correlated) observations would otherwise justify.  

– This tendency of OLS to underestimate SE(𝛽̂) means that OLS typically overestimates 

t-scores of the estimated coefficients, since: t = 
(𝛽̂−𝛽𝐻0)

SE(𝛽̂)
 . this makes it more likely that 

we will reject a null hypothesis when it is in fact true (Type I error).  
 
Thus, the t-scores printed out by a typical software regression package in the face of serial 
correlation are likely to be too high.  

9.3 The Durbin-Watson d Test 
the test for serial correlation that is most widely used is the Durbin-Watson d test.  
 

The Durbin-Watson d Statistics 

Durbin-Watson d 
statistics 

Used to determine if there is first-order serial correlation in the error term of an 
equation by examining the residuals of a particular estimation of that equation.  

 
It is important to use the Durbin-Watson d statistics only when the assumptions that underlie its 
derivation are met: 

1. The regression model includes an intercept term 
2. The serial correlation is first order in nature 
3. The regression model does not include a lagged dependent variable as an independent 

variable  
 
The equation for the Durbin-Watson d statistics for T observations is: 
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d = ∑
(𝑒𝑡−𝑒𝑡−1)2

∑ 𝑒𝑡
2𝑇

1

𝑇
2  

 
where; 

- et: the OLS residuals 
 
The Durbin-Watson d statistics equals 0 if there is extreme positive serial correlation, 2 if there is no 
serial correlation, and 4 is there is extreme negative serial correlation. See page 334.  
 

Using the Durbin-Watson d test 
The Durbin-Watson d test is unusual in two respects: 

1. econometricians almost never test the one-sided null hypothesis that there is a negative 
serial correlation in the residuals because negative serial correlation is quite difficult to 
explain theoretically in economic or business analysis. Its existence unusually means that 
impure serial correlation has been caused by some error of specification. 

2. The Durbin-Watson test is sometimes inconclusive. Whereas previously explained decision 
rules always had only acceptance regions and rejection regions, the Durbin-Watson test has a 
third possibility, called the inconclusive region.  

 
To test for positive serial correlation, the following steps are required: 

1. Obtain the OLS residuals from the equation to be tested and calculate the d statistics using 

–  d = ∑
(𝑒𝑡−𝑒𝑡−1)2

∑ 𝑒𝑡
2𝑇

1

𝑇
2  

2. determine the sample size and the number of explanatory variables and then consult 
Statistical Tables B-4, B-5 or B-6 to find the upper critical d value (dU) and the lower critical d 
value (dL).  

3. given the null hypothesis of no positive serial correlation and a one-sided alternative 
hypothesis: 
– H0: 𝜌 ≤ 0  (no positive serial correlation) 

HA: 𝜌 > 0  (positive serial correlation) 
 

 The appropriate decision rule is: 
– If d < dL  reject H0 
– If d > dU  do not reject H0 
– If dL ≤ d  ≤ dU  inconclusive  

 
Read page 335 for two-sided d test and read 336 – 337 for example Durbin-Watson test. 

Chapter 11: time-series models 

11.4 Spurious correlation and non-stationarity 
one problem with time-series data is that independent variables can appear to be more significant 
than they are if they have the same underlying trend as the dependent variable.  
 

Spurious correlation A strong relationship between two or more variables that is not caused by a 
real underlying causal relationship 

 
If you run a regression in which the dependent variable and one or more independent variables are 
spuriously correlated, the result is a spurious regression, and the t-scores and overall fit of such 
spurious regressions are likely to be overstated and untrustworthy.  
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Stationary and nonstationary time series 

Stationary time series A series whose basis properties (for example its mean and its variance) do not 
change over time 

Nonstationary time series Has one or more basic properties that do change over time 

 
A time-series variable Xt is stationary if: 

1. The mean of Xt is constant over time 
2. The variance of Xt is constant over time 
3. The simple correlation coefficient between Xt and Xt-k depends on the length of the lag (k) 

but on no other variable (for all k).  
 
If one or more of these properties is not met, then Xt is non-stationary. If a series is nonstationary, 
that problem is often referred to as non-stationarity. Besides variables, error terms can also be 
nonstationary. Many cases of heteroskedasticity in time-series data involve an error term with a 
variance that tends to increase with time. That kind of heteroskedastic error term is also 
nonstationary.  
 
The major consequence of nonstationary regression analysis is the spurious correlation that inflates 
R2 and the t-score of the nonstationary independent variables, which in turn leads to incorrect model 
specifications. Unfortunately, many economic time-series variables are nonstationary even after the 
removal of a time trend. This non-stationarity typically takes the form of the variable behaving as 
though it were a random walk.  
 

Random walk A time series variable where next period’s value equals this periods value plus a stochastic 
error term.  

 
A random-walk variable is nonstationary because it can wander up and down without an inherent 
equilibrium and without approaching a long-term mean of any sort.  
 
Let’s suppose that Yt is generated by an equation that includes only past values of itself (an 
autoregressive equation): 
 
Yt = 𝛾𝑌𝑡−1 + 𝑣𝑡  
 
Where; 

- Vt = classical error term 
- If |𝛾| < 1, then the expected value of Yt will eventually approach 0 (and therefore be 

stationary) as the sample size gets bigger and bigger 
- If |𝛾| > 1, then the expected value of Yt will continuously increase, making Yt nonstationary  

Most importantly, what about If |𝛾| = 1? 
- Yt = 𝑌𝑡−1 + 𝑣𝑡  

 
Than it is a random walk. The expected value of Yt does not converge on any value, meaning that it is 
nonstationary.  
 

Unit root The circumstance where  𝛾 = 1. If a variable has a unit root, then the equation above holds, 
and the variable follows a random walk and is nonstationary.  

 
The relationship between unit roots and non-stationarity is so strong that most econometricians use 
the words interchangeably, even though they recognize that both trends and unit-roots can cause 
non-stationarity.  
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Spurious regression 
If the dependent variable and at least one independent variable in an equation are nonstationary, it 
is possible for the results of an OLS regression to be spurious. Consider the linear regression model: 
 
Yt = a0 + ß0Xt + ut  
 
If both X and Y are nonstationary, then they can be highly correlated for noncausal reasons, and our 
standard regression inference measures will almost surely be very misleading in that they will 

overstate 𝑅̅2 and the t-score for 𝛽̂0. To avoid spurious regression results, it is crucial to be sure that 
time-series variables are stationary before running regressions.  
 

The Dickey-Fuller test 
To ensure that the equations we estimate are not spurious, it is important to test for non-
stationarity. If we can be reasonably sure that all variables are stationary, then we need not worry 
about spurious regressions.  
 

Dickey-Fuller test Standard method of testing for non-stationarity. Examines the hypothesis that the 
variable in question has a unit root and, as a result, is likely to benefit from being 
expressed in first-difference form.  

 
 
How can you tell if a time series is nonstationary? 

1. Visually examine the data 
2. After this trend has been removed, the standard method of testing for non-stationarity is the 

Dickey-Fuller test 
 
We looked at the value of 𝛾 to help us determine if Y was stationary or nonstationary 

- |𝛾| < 1 then Y is stationary 
- |𝛾| > 1 then Y is nonstationary 
- |𝛾| = 1 then Y is stationary due to a unit root 

 
Thus, we conclude that the autoregressive model is stationary if |𝛾| < 1 and nonstationary otherwise. 
So, it makes sense to estimate Yt = 𝛾𝑌𝑡−1 + 𝑣𝑡 and determine if |𝛾| < 1 to see if Y is stationary, and 
that is almost exactly how the Dickey-Fuller test works: 

1. Subtract Yt-1 from both sides of the equation  
– (Yt – Yt-1) = (𝛾 − 1)𝑌𝑡−1 + 𝑣𝑡 

2. if we define ∆Yt = Yt – Yt-1 then we have the simplest form of the Dickey-Fuller test 
– ∆Yt = ß1Yt-1 + vt 
– ß1 = (𝛾 − 1) 

3. summarize the hypotheses 
– H0: Yt contains a unit root - |𝛾| = 1 and ß1 = 0 
– HA: Yt is stationary   - |𝛾| < 1 and ß1 < 0 

4. Hence, we construct a one-sided t-test on the hypothesis that ß1 = 0 
– H0: ß1 = 0 
– HA: ß1 < 0 

 
See page 406 for different forms of the Dickey-Fuller test. No matter what form of the Dickey-Fuller 
test we use, the decision rule is based on the estimate of ß1.  

- If 𝛽̂1 is significantly less than 0, then we can reject the null hypothesis of nonstationarity.  
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- If 𝛽̂1 is not significantly less than 0, then we cannot reject the null hypothesis of non-
stationarity 

 
The standard t-table does not apply to the Dickey-Fuller test. The critical values depend on the 
version of the Dickey-Fuller test that is applicable. Note that the equations for the Dickey-Fuller test 
and the critical values for each of the specifications are derived under the assumption that the error 
term is serially uncorrelated. If the error term is serially correlated, then the regression specification 
must be modified to take this serial correlation into account.  
 

Cointegration 
If the Dickey-Fuller test reveals non-stationarity, what should we do? The traditional approach has 
been to take the first differences (∆Y = Yt – Yt-1 and ∆X = Xt – XT-1) and use them in place of Yt and Xt in 
the equation. Unfortunately, using first differences to correct for non-stationarity throws away 
information that economic theory can provide in the form of equilibrium relationships between the 
variables when they are expressed in their original units (Xt and Yt). As a result, first differences 
should not be used without carefully weighing the costs and benefits of that shift, and in particular 
first differences should not be used until the residuals have been tested for cointegration.  
 

Cointegration Consist of matching the degree of nonstationarity of the variables in an equation in a way 
that makes the error terms (and residuals) of the equation stationary and rids the equation 
of any spurious regression results.  

 
Even though individual variables might be nonstationary, it is possible for linear combinations of 
nonstationary variables to be stationary, or cointegrated. If a long-run equilibrium exists between a 
set of variables, those variables are said to be cointegrated. If the variables are cointegrated, then 
you can avoid spurious regressions even though the dependent variable and at least one 
independent variable are nonstationary. Read page 408 – 409 (important).  
 
To sum, if the Dickey-Fuller test reveals that our variables have unit roots, the first step is to test for 
Cointegration in the residuals. If the nonstationary variables are not cointegrated, then the equation 
should be estimated using the first differences (∆Y and ∆X). however, if the nonstationary variables 
are cointegrated, then the equation can be estimated in its original units.  
 

A standard sequence of steps for dealing with nonstationary time series 
1. Specify the model. This model might be a time-series equation with no lagged variables, it 

might be a dynamic model in its simplest form, or it might be a dynamic model that includes 
lags in both the dependent and independent variables.  

2. Test all variables for non-stationarity (technically unit roots) using the appropriate version of 
the Dickey-Fuller test 

3. If the variables do not have unit roots, estimate the equation in its original units (Y and X) 
4. If the variables have unit roots, test the residuals of the equation for cointegration using the 

Dickey-Fuller test.  
5. If the variables have unit roots but are not cointegrated, then change the functional form of 

the model to first differences (∆Y and ∆X) and estimate the equation 
6. If the variables have unit roots and are cointegrated, then estimate the equation in its 

original units 
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Online reading chapter 16: experimental and panel data 
The experimental approach is important because it provides a possible way for regression analysis to 
provide evidence of causality. Panel data are formed when cross-sectional and time-series data sets 
are combined to create a single data set. Although some researchers use panel data to increase their 
sample size, the main reason for working with panel data is to provide an insight into analytical 
questions that can’t be answered by using time-series or cross-sectional data alone. 
 

16.1 Experimental methods in economics 
correlation does not prove causality. Can experimental methods provide evidence of causality in 
economics? 
 

Random assignment experiments 
Random assignment is an experimental design in which the following steps are followed: 

1. A sample of subjects is chosen or recruited, and then they are randomly assigned to one of 
two groups – the control group and the treatment group.  

 

Treatment group Receives the medicine that is being tested or the group who receives training  

Control group Receives a harmless ineffective placebo or the group who does not receive training 

Random assignment 
experiments 

If the treatment and control groups are chosen randomly, then such experiments 
are called random assignment experiments 

 
Randomization helps ensure that any difference in outcome was caused by the treatment and not 
merely correlated with the treatment. The subjects’ random assignment to the group should be 
enough to guarantee that the only systematic reason for observed differences are the chance 
consequence of the random assignment. The larger the sample, the more likely it is that random 
fluctuations will balance out. Factors other than the treatment that may affect the outcome are put 
in the error term, and the resulting equation is: 
 
OUTCOMEi = β0 +  β1TREATMENTi +  ϵi 
 
Where;  

- OUTCOMEi =  a measure of the desired outcome in the ith individual 
- TREATMENTi =  a dummy variable equal to 1 for individuals in the treatment group and 0 for  

individuals in the control group 
 

ß1 is often called the difference estimator because it measures the difference between the average 
outcome for the treatment group and the average outcome for the control group. If the estimated 
value of ß1 is substantially different from zero in the direction predicted by theory, then we have 
evidence that the treatment did indeed cause the outcome to move in the expected direction. 
However, random assignment can’t always control for all possible other factors, and we may be able 
to identify some of these factors and add them to our equation.  
 
OUTCOMEi = β0 +  β1TREATMENTi +  β2X1i + β3X2i +  ϵi 
 
Where; 

- X1 = a dummy variable for the individual’s gender 
- X2 = the individual’s age 
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Unfortunately, random assignment experiments are not common in economics because they are 
subject to problems that typically do not plague medical experiments 

1. Non-random examples 
– Most subjects in economic experiments are volunteers, and samples of volunteers 

often are not random.  
– The characteristics of the volunteer sample are not necessarily representative of the 

population.  
2. Unobservable heterogeneity 

– In the second equation, we added observable factors to avoid omitted variable bias, 
but not all omitted factors in economics are observable.  

3. The Hawthorne effects 
– The fact that human subjects know that they are being observed sometimes can 

change their behaviour, and this change in behaviour could clearly change the results 
of the experiment.  

– Hawthorne effect: the fact that people behave differently when they know they are 
being watched.  

4. Impossible experiments 
 

Natural Experiments 
If random assignment experiments are not always feasible in economics, one alternative approach is 
to use data from natural experiments to try to get at issues of causality.  
 

Natural experiments 
(quasi experiments) 
 

are similar to random assignment except those observations fall into treatment and 
control groups naturally (because of an exogenous event) instead of being randomly 
assigned by the researcher.  

 
This approach requires finding natural events or policy changes that can be analysed as if they were 
treatments in a random assignment experiment. If the natural exogenous (not under control of 
either of the groups), it turns out that a natural experiment can come very close to mimicking a 
random assignment experiment. The key is thus to find naturally occurring events that mimic a 
random assignment experiment.  
 
A strict approach to natural experiments would seem to require that one find equivalents of 
treatment and control groups that have no systematic differences except for the treatment variable 
and other factors that can be observed and added to the equation. However, in economics, the 
treatment and control groups seem quite likely to have started off with different levels of the 
outcome measure. In addition, unobserved heterogeneity or non-random samples could result in the 
groups having different outcome measures. If the outcomes do not start of equal, then comparing 
outcomes after the treatment won’t give us a true measure of the impact of the treatment.  
 
To get around this problem, economists who run natural experiments do not compare outcomes 
between the treatment and control groups. Instead, they compare the change in outcomes. The 
resulting difference in differences measures the impact of the treatment on the outcome of the 
natural experiment. In a regression equation, the appropriate dependent variable in such a natural 
experiment thus is the difference in the outcome measure, not the outcome level: 
 
∆OUTCOMEi = β0 + β1TREATMENTi + β2X1i +  β3X2i +  ϵi 
 
Where; 

- ∆OUTCOME = the outcome after the treatment minus the outcome before the treatment for  
the ith observation 
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ß1 The difference-in-differences estimator. It measures the difference between the change in the treatment 
group and the change in the control group, holding constant X1 and X2.  

 
In essence, the difference-in-differences estimator uses the change in the control group as a measure 
of what would have happened to the treatment group if there hadn’t been a treatment. The validity 
of this approach thus depends on the assumption that the changes in the outcome would have been 
the same in both the treatment and control group had there been no treatment.  
 
In the equation above 

- ß2 = measures the impact of one-unit increase in X1 on the change in the outcome (not the  
level of the outcome as before) 

 
one final note. It is important to think through the appropriate before and after time frames when you 
are collecting data for a natural experiment. Data on the control and treatment groups should come 
from a time period far enough in advance of the policy change (treatment) that you are not picking up 
any anticipatory effects of the intended policy change.  
 

16.2 Panel Data 
when a case has both time-series and cross-sectional dimensions, it is neither time-series nor cross-
sectional. It is a panel data set.  
 

What are panel data 

Panel data Combine time-series and cross-sectional data in a very specific way. Panel data include 
observations on the same variables from the same cross-sectional sample from two or more 
different time periods 

 
Not every data set that combines time-series and cross-sectional data meet this definition. If 
different variables are observed in the different time periods or if the data are drawn from different 
samples in the different time periods, then the data are not considered to be panel data.  
 
Why use panel data? 

1. Panel data certainty will increase the sample sizes 
2. Panel data provide insight into analytical questions that cannot be answered by using time-

series or cross-sectional data.  
3. Panel data often allow researchers to avoid omitted variable problems that otherwise would 

cause bias in cross-sectional studies.  
 
There are four different kinds of variables that we encounter when we use panel data 

1. Variables that can differ between individuals but do not change over time (gender, ethnicity) 
2. Variables that change over time but are the same for all individuals in a given time period 

(retail price index, national unemployment rate) 
3. Variables that vary both over time and between individuals (income, marital status) 
4. Trend variables that vary in predictable ways (individual’s age) 

 
To estimate an equation using panel data, it is crucial to ensure that the data are in the right order. 
Typically, panel data are grouped by starting with the first cross-section for all time periods, followed 
by the second cross-section for all time periods, and so on. This format is usually called long form 
because it results in a narrow but long data file.  
 
Finally, the use of panel data requires a slight expansion of our notation. In the past we have used 
the subscript i to indicate the observation number in a cross-sectional data set, so Yi indicated Y for 
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the ith cross-sectional observation. Similarly, we have used the subscript t to indicate the 
observation number in a time series, so Yt indicated Y for the tth time-series observation. In a panel 
data set, however, variables will have both cross-sectional and time-series components, so we will 
use both subscripts. As a result, Yit indicates Y for the ith cross-sectional and tth time-series 
observation. This notation expansion also applies to independent variables and error terms.  
 

The Fixed effects model 
There are several alternative estimation procedures for estimating panel data equations, but most 
researchers use the fixed effects model. The fixed effect model is a method of estimating panel data 
equations that work by allowing each cross-sectional unit to have a different intercept: 
 
Yit = β0 +  β1Xit +  β2D2i + ⋯ + βNDNi + vit 
 
Where, 

- D2 = intercept dummy equal to 1 for the second cross-sectional entity and 0 otherwise 
- DN = intercept dummy equal to 1 for the Nth cross-sectional entity and 0 otherwise 

 
What we are doing is allowing each cross-section’s intercept to differ. Because the ßs are constant 
across units, in essence, we have N parallel regression lines. Observations across time in each unit 
vary around a baseline level specific to that unit. One major advantage of the fixed effects model is 
that it avoids bias due to omitted variables that do not change over time (race or gender). Such time-
invariant omitted variables often are referred to as unobserved heterogeneity or a fixed effect. To 
understand how the fixed effects model does this, look how the equation would look like with only 
two years’ worth of data: 
 
Yit  = β0 +  β1Xit +  β2D2i + vit 
vit  = classical error term + unobserved impact of the time-invariant omitted variables 
 =  ϵit +  𝑎i 
Yit  = β0 +  β1Xit +  β2D2i + ϵit +  𝑎i 
 
the unobserved impact a has only one subscript because it is a function of omitted variables that do 
not change over time. The key is to think about how much each observation of a variable differs from 
the average for that variable: 
 
Y̅i  = β0 +  β1X̅i  +  β2D2i + ϵ̅i  + 𝑎i 
 
where the bar over a variable indicates the mean of that variable with respect to time.  
 
Yit – Y̅i  = β1(Xit − X̅i) +  ϵit −  ϵ̅i  
 
If we use the symbol 𝜃 to indicate a demand variable (a variable that has had its mean subtracted 
from it) and if we add ß0 to the equation above to avoid violating Classical Assumption II, we obtain 
 
θYit  = β0 +  β1θXit +  θϵit 
 
where ; 

- θYit =  the demeaned Y = Yit – Y̅i 
- θXit= the demeaned X = Xit – X̅i 
- θϵit = the demeaned ϵ = ϵit – ϵ ̅i 

in actual practice many researchers use Yit = β0 +  β1Xit +  β2D2i + ⋯ +  βNDNi +  vit.  
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The fixed effects model has some drawbacks 
1. degrees of freedom for the fixed-effects model tend to be low because we lose one degree 

of freedom for cross-sectional observations because of the time-demeaning.  
2. Any substantive explanatory variables that do not vary across time in each unit will be 

perfectly collinear with the fixed effects, so we cannot include them in the model or estimate 
their coefficients.  

 

16.3 Fixed versus random effects 
The fixed-effects model does a good job estimating panel data equations, and it also helps avoid 
omitted variable bias due to unobservable heterogeneity. As a result, the fixed effects model is the 
panel data estimation procedure that we recommend. However, many researchers use an advanced 
panel data method called the random-effects model.  
 

The Random-effects model 
An alternative to the fixed effects model is called the random-effects model. While the fixed effects 
model assumes that each cross-sectional unit has its own intercept, the random-effects model 
assumes that the intercept for each cross-sectional unit is drawn from a distribution that is centred 
around a mean intercept. Thus, each intercept is a random draw from an intercept distribution and 
therefore is independent of the error term for any observation.  
 
The random-effects model has several clear advantages over the fixed effects model 

1. A random-effects model will have quite a few more degrees of freedom than a fixed model 
because rather than estimating an intercept for virtually every cross-sectional unit, all we 
need to do is to estimate the parameters that describe the distribution of the intercepts.  

2. You can estimate coefficients for explanatory variables that are constant over time  
 
However, the random effects estimator has a major disadvantage 

1. It requires us to assume that ai is uncorrelated with the independent variables, the Xs, If we 
are going to avoid omitted variable bias.  

 

Choosing between fixed and random effects 
1. One key is the nature of the relationship between ai and the Xs 

– If they are likely to be correlated, then it makes sense to use the fixed effects model, 
as that sweeps away the ai and the potential omitted variable bias.  

 
Many researchers use the Hausman test to see whether the regression coefficients under the fixed 
effects and random effects model are statistically different from each other. If they are different, 
then the fixed effects model is preferred even though it uses up many more degrees of freedom. If 
the coefficients are not different, then researchers either use the random effects model (in order to 
conserve more degrees of freedom) or provide estimates of both the fixed effects and random 
effects model.  
 
Learning objectives  
The aim of the course is to teach bachelor students to apply econometric models for cross-sectional 
data (measured at one point in time) and longitudinal data (repeated measures over time) to answer 
substantial research questions using the general-purpose statistical software package Stata. 
Techniques discussed in the course are simple and multiple regression analysis, time series analysis, 
cointegration, and analysis of panel data. The focus will be on determining economic associations 
among variables, performing statistical tests of the associations, economic interpretation of the 
results and presenting the results in a scientific paper. Students also learn to work with Stata syntax 
(do) file 
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Disclaimer 
 
ESV Nijmegen tries to keep the content of this summary up to date and where needed complements 
it. Despite these efforts, it is still possible that the content is incomplete or incorrect. The offered 
material is a supplement for studying next to the appointed literature. The material is offered 
without any guarantee or claim for correctness. 
 
All rights of intellectual property concerning these summaries are owned by the ESV. Copying, 
spreading or any other use of this material is not allowed without written permission by the ESV 
Nijmegen, except and only to the extent provided in regulations of mandatory law, unless indicated 
otherwise. 
 
Tips and remarks about the summary can be sent to secretaris@esvnijmegen.nl.  
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